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Abstract. The periodic orbit family with the shortest period in a two-dimensional anhar- 
monic oscillator is responsible for oscillations in the smoothed density of states. We have 
computed the energy spectrum for a specific potential and compared the oscillations of 
the smoothed density of states with those predicted by semiclassical theory. We also verify 
that the ‘scarred’ intensity profile for these orbits is not affected by the period-doubling 
bifurcation cascade that breaks up the surrounding tori. 

1. Introduction 

The formal semiclassical theory for the quantum energy spectrum, developed by 
Gutzwiller (1971), ascribes to each periodic orbit a term in the density of states. 
Generically, these orbits are embedded in families parametrised by the energy (or the 
period) and the phase of each contribution is basically the action S measured in units 
of Planck’s constant R .  Balian and Bloch (1974) obtained similar results for the 
smoothed density of states, with the difference that in this case not all the periodic 
orbits contribute but only those having periods up to a finite value T, reciprocal to the 
energy smoothing SE according to the uncertainty principle T6E 2: h. It follows that 
by increasing sufficiently the smoothing SE we can eliminate the contribution of all 
the periodic orbits so that only the average (or Weyl) density of states remains (see, 
e.g., Berry (1983) or Ozorio de Almeida (1988) for reviews of these topics). By decreasing 
SE we can then incorporate the contribution of the family of periodic orbits with 
shortest period. The resulting smoothed density of states should exhibit, superposed 
on the averaged background, a nearly sinusoidal oscillation in energy with frequency 
117, where 

r = dS/dE  (1) 
is the period of the orbit. 

The wavefunctions for these quantum states may also display ‘scars’ in the neigh- 
bourhood of the periodic orbits, as discovered by Heller (1984). These scars become 
particularly sharp if we superpose the intensity of all the wavefunctions in a range 6E. 
Heller’s theory for wave intensities was cast in a form quite analogous to the one for 
the spectrum by Bogomolny (1988) (see also Ozorio de Almeida 1988). However, so 
far it is not certain whether the intensity peaks at a scar depend on the combined 
contribution of the many states that are in the range 6E or whether they can be ascribed 
to  a single strong state in this interval. 
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The formal semiclassical results that we are discussing cannot be completely verified 
by a calculation using a basis of states and a given value of Planck’s constant. 
Conversely, the semiclassical results are useful only if they describe the approximate 
features of each particular quantum systems. It is therefore important to verify computa- 
tionally which are the features of these theories that can be relied on in less than ideal 
conditions. So far most work has been concentrated on the easily accessible periodic 
orbits of billiard systems (as in Heller 1984, Bogomolny 1988). However, nonlinear 
oscillators, 

H ( x , y , p x , p , )  = (P2,+P3/2+ V(X,Y) (2) 

provide more realistic examples, Of these, the HCnon-Heiles potential is the most 
studied, but here we work with 

V(x, y )  = (x2+ 3y2)/2 - x 2 y  + x 4 /  12. (3) 

This potential (codename MARTA) has a minimum at zero energy and two saddles 
at an energy of 0.75. The symmetry in x implies that x = 0, p x  = 0 is an invariant plane 
in phase space; hence this is foliated by the family of ‘vertical’ ( y  direction) periodic 
orbits. The potential along this plane is quadratic, so these orbits have constant period 
T = 21r/J3. Numerical studies of this system by de Aguiar et a1 (1987), show that this 
is the orbit with the lowest period below the saddle energy. Furthermore, this family 
generates a period-doubling bifurcation cascade starting at E = 0.103. Below this energy 
the motion in its neighbourhood is mainly regular, becoming locally chaotic at higher 
energies, though the system still exhibits invariant tori (Aguiar and Baranger 1988). 

The spectrum and the eigenfunctions of the MARTA potential can be calculated by 
diagonalising the quantum MARTA Hamiltonian in the harmonic oscillator basis corre- 
sponding to the quadratic terms in the potential. In the following section we display 
the smoothed density of states of the spectrum corresponding to 595 states in the 
energy range [0.0797,0.1997] with h = 0.0029, which thus includes the chaotic transition 
near the symmetry plane. Our numerical results are then compared with the predictions 
of periodic-orbit theory. 

In section 3 we display wave intensities, averaged over y,  as functions of x. These 
can be compared with the wave intensities given by the hypothesis of Voros (1976, 
1977) and Berry (1977) at the same energy, that is the hypothesis which results from 
the assumption that the Wigner function is a delta function over the energy shell. 
Comparison with this average background reveals that individually scarred states are 
still present above the period-doubling bifurcation that destroys the neighbouring tori. 

2. Density of states 

Below the saddle energy (0.75), the eigenvalue problem of the MARTA quantum system, 

H+i(x, Y )  = Ei+i(x, .Y) (4) 

was solved by using the expansion 

n = O  m=O 

where cp,(x) and cpm(y) are eigenfunctions of the one-dimensional harmonic oscillator 
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The prime in the summation means that only even n (even parity) or only odd n (odd 
parity) are included. 

The value n = N, at which the expansion ( 5 )  is truncated, is chosen according to 
the energy interval to be investigated, which, of course, has to be much below the 
saddle point energy. In this region we can neglect the connection with the continuum 
through tunnelling under the saddles. 

As already mentioned, one of the families of periodic orbits of the classical MARTA 

Hamiltonian (de Aguiar et a1 1987) is the so-called vertical family, which consists of 
harmonic oscillations of period 2.rr/J3 in the y direction. This family undergoes a first 
period-doubling bifurcation at E = 0.103 and, in order to verify its effect on the level 
density, we calculated this level density in the energy interval [0.0797,0.1977]. This 
range of energy is much below the saddle energy, therefore the expansion method with 
truncation can be safely used. Semiclassical results are obtained by using a small value 
of A. However, too small a value of h implies the diagonalisation of too large a matrix, 
so the value h = 0.0029 chosen by us represents a compromise. With this value the 
level spacing of the vertical harmonic oscillator is hw, = 0.005 and the above energy 
interval contains 595 states. We made the truncation of expansion ( 5 )  at N = 40. 

The density of states (histograms) as a function of energy has been calculated in 
the above energy interval using SE = 0.001 and SE = 0.002. For the value of h we are 
using, the number of states contained in such small SE is small, which gives rise to 
spurious fluctuations, but this problem can be circumvented by making a Gaussian 
smoothing. We have used normalised Gaussians of half width equal to SE, and the 
resulting smoothed level densities for SE = 0.001 and SE = 0.002 are displayed in figures 
1 and 2, respectively. These densities were numerically obtained at energy points 
separated by 0.0005 and a line was drawn joining these points. 

According to the periodic-orbit theory, the density of states may be separated into 
two terms (Berry 1983, Ozorio de Almeida 1988), 

d ( E )  = d , " ( E ) +  d , , , ( E )  (7) 

E E 
Figure 1. Gaussian smoothed density of states d ( E )  
with SE = 0.001. 

Figure 2. Gaussian smoothed density of states d ( E )  
with SE = 0.002. 
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where d,, is the average density of states (the so-called Weyl term) corresponding to 
zero-period orbits, and do,, is the oscillatory term that incorporates the contribution 
of periodic orbits of period greater than zero. 

Numerically, the Weyl term d,, is obtained by using a sufficiently large value of 
6E in the calculation of the density. The term do,, is then obtained by subtracting the 
Weyl term from the total density d (  E ) .  Therefore, the contribution to do,, of the lowest 
period orbits may be analysed by appropriately choosing the value of SE used in the 
calculation. 

The Weyl term has been approximated by the Gaussian smoothed level density 
calculated using SE =0.04 (see figure 3). Thus, using this approximation for d,, we 
obtained do,, for SE =0.001 and SE =0.002. These results are displayed in figures 4 
and 5 ,  respectively (full curves). 

In theory, each periodic orbit and all its repetitions contribute to d,,,. When a 
period n-upling occurs, new orbits are generated and the summation will include the 
nth repetition of the original orbit plus all the new period n-upled orbits generated at 
the bifurcation. The vertical family is the family of periodic orbits of the classical 
MARTA potential (3) having the lowest period in the energy range under consideration. 
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O '  Figure 3. The Weyl term d , , ( E ) ,  corresponding to 
Oe2 the Gaussian smoothed density of states calculated 

E with SE = 0.04. 
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E E 
Figure 4. The full curve is d, , , (E)  with SE =0.001 
and the broken curve is the approximation (8) with 
A = -7.290 (standard deviation 0.653) and B = 
-0.695 (standard deviation 0.0891, obtained by a 
least-squares nonlinear fit. 

Figure 5. The full curve is d, , , (E)  with SE =0.002 
and the broken curve is the approximation (8) with 
A = -3.364 (standard deviation 0.440) and E = 
-0.536 (standard deviation 0.130), obtained by a 
least-squares nonlinear fit. 
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Thus, for the smoothing that we used, do,, is basically obtained by considering only 
the contribution of the vertical family, without any repetition. In this approximation, 
do,, is nearly a sinusoidal oscillation with the same period of the vertical family, 
therefore it can be approximated by 

do, , (E)  = A  sin[(2.rr/hoY)E + B]. (8) 

The dominance of this period in do,, is confirmed by the Fourier analysis shown in 
figure 6 .  The broken curves displayed in figures 5 and 6 were obtained by fitting the 
corresponding values of do,, to the above sine function. 

10000 

8 000 

,, 6000 
L 

2000 

0 1 , 

loo 2oo 3oo 400 500 6oo Figure 6. Fourier analysis of the smoothed density 
Frequency of states with SE =O.OOl  (figure 1). 

It is important to note that the amplitude of a bifurcating orbit goes through a 
sharp peak (Ozorio de Almeida and Hannay 1987). However, in this case of period 
doubling, the peak appears only for even repetitions, justifying the approximately 
constant amplitude over a narrow energy range in (8) for the first return of the orbit. 

Now, do,, obtained numerically incorporates the contributions of all periodic 
families having periods up to h/6E.  It should be noted that, depending on the energy 
value, already for a period twice the period of the vertical orbit, there are several orbits 
contributing to the density of states in the energy interval considered by us (de Aguiar 
et al1987). These contributions are not completely cancelled by the Gaussian smoothing 
in the period. Therefore, it is quite remarkable that there should be such close agreement 
between the frequency of oscillation of do,, and that of the approximation given by 
(8). As for the amplitude of d,,,, it should vary smoothly in the semiclassical limit, 
according to the theory. Thus, the large variations in amplitude observed in figures 4 
and 5 cannot be accounted for in the semiclassical approximation (8), though it may 
result from the influence of orbits with longer periods. 

3. Averaged wave intensities 

As we wanted to detect the existence of scars due to the vertical period family, we 
have calculated the state density distribution averaged over y, given by 

N 

P i ( x )  i+i(x, Y)t2  dy 2: c c ~ m c i , ~ m p n ( x ) ~ n , ( x ) *  (9 ) 
n,n'm=O 

even 
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(The odd-parity states are zero at the origin and therefore cannot exhibit any scar due 
to the vertical family.) 

Thus, this averaged wave intensity was calculated for those eigenstates with eigen- 
values lying in the energy interval considered in section 2. The full curves in figures 
7, 8 and 9 show p , ( x )  corresponding to the eigenstates of energies 0.1040, 0.1043 and 
0.1044, respectively. The dotted curves shown in these figures are the corresponding 
state density distributions pr(x), resulting from the use of the ergodic assumption 

P 

Figure 7. The full curve is p , ( x )  for the eigenstate 
with E = 0.1040, exhibiting the caustic peaks charac- 

-8 -4 0 4 8 teristic of quasiperiodic motion. The dotted curve is 
X the corresponding p : ( x ) .  

Figure 8. The full curve is p , ( x )  for the eigenstate 

-8 -4 0 4 8 periodic family. The dotted curve is the correspond- 
I '.. with E = 0.1043, exhibiting a scar due to the vertical 

. . . .  
0 (..: 

X ing P : ( x ) .  
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P 

Figure 9. The full curve is p , ( x )  for the eigenstate 
-8 -4  0 4 8 with E = 0.1044, apparently exhibiting anticaustics 

with oscillations that follow p : ( x )  (dotted line). X 
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(Voros 1976, 1977), which in the case of a Hamiltonian with two degrees of freedom 
of type (2) is given by (Berry 1977) 

p ; ( x )  = j' dy - v(X, U)) (10) 

with 0 the step function. 
We see that the wave intensities displayed in figures 7, 8 and 9 exhibit completely 

different characteristics. The state distribution in figure 7 exhibits caustic peaks, which 
are the signature of quasiperiodic motion. The corresponding eigenvalue is just above 
0.103, which is the energy value at which the vertical periodic family undergoes its 
first period-doubling bifurcation. The scarred wave intensity profile shown in figure 8 
is virtually identical to the ones found below the bifurcation where the vertical orbit 
is stable. These scarred states are found near the quantised actions 

AS = nh (11) 

as previously discovered by M Saraceno. The wave intensity displayed in figure 9 
seems to exhibit anticaustics (Berry 1983), with the oscillations more or less following 
p ; ( x ) .  However, as the classical underlying motion is not globally chaotic, further 
verification is required in order to confirm the presence of anticaustics. 
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